INTRODUCTION

The use of cerclage was condemned for decades based on the erroneous assumption that the cerclage would strangulate bone circulation. We understand today that most of the failures attributed to vascular strangulation were due to a lack of understanding of the biomechanics and biology of fixation and the application thereof. Figs 1 and 2 are examples of recent successful applications of cerclages to fulfill different functions in fracture fixation. The cases shown are extracted from the ICUC® database of continuous, complete, unchanged and audited recordings. In the following the basic and special mechanics and biomechanics as well as biological aspects and application are dealt with in so-called one page papers.
The knurled connection of a wire loop is produced. The deformability of cables made of titanium, with its excellent tissue compatibility and larger flexibility but smaller plastic deformation, depends mainly on the stranded structure of the cable.

Traction produced:
Fig. 3 demonstrates the effect of wire diameter compared to cable on the amount of traction produced. In respect to the latter the strength of the wire connection depends on the type of application (spring back or plastic deformation). The plastic deformation on application of the knurl has a strong effect on remaining that is active traction after application (Fig. 4).

The data on fatigue is crucial, here again the cable stands

CERCLAGE MECHANICS, BASIC ASPECTS

The successful use of cerclage requires attention understanding of the mechanical limitations. In the following the most relevant characteristics are discussed with spring back and loose-lock as new elements to be considered in internal fixation.

The cerclage consists of a loop that encircles bone fragments with or without additional splinting implants like plates, nails or shaft of a prosthesis. The loop usually consists of a wire with a knurled connection, or of a cable with a crimped connection. We will not consider straps here.

The cerclage wires are made of annealed steel that is characterized by its ductility, i.e. large deformation before breakage occurs. This deformability is important when

Fig. 1. Cerclages provide essential help in the treatment of periprosthetic fractures. Here the cerclage cables were used for reduction and fixation. They help, for instance, where plate screws would collide with the shaft of the prosthesis.

Fig. 2. Cerclage around the plate in a short oblique fracture. Here cerclage is used for reduction and maintenance thereof. A twisted cerclage wire was used for reduction and fixation.

Fig. 3. Comparison of stabilization using twisted wires of different diameters or crimped cable. The applied traction increases with the wire diameter. Bending down the knurl may result in appreciable loss of traction. The crimping of the cable produces minimal loss. The remaining traction is largest with crimped cable (14).

Fig. 4. Wire traction after twisting to the elastic limit, the plastic limit and after breakage when exceeding twisting torque. When twisting is stopped within the range of elastic deformation only about half of the possible traction is reached and after bending down a small amount of traction is left. When twisting into the plastic range 150 N traction are reached and after bending down about 75 N traction remain active. When twisting until breakage the same amount of traction is reached and without the need of bending down the full amount is left active (14).

The knurled connection of a wire loop is produced. The deformability of cables made of titanium, with its excellent tissue compatibility and larger flexibility but smaller plastic deformation, depends mainly on the stranded structure of the cable.

Traction produced: Fig. 3 demonstrates the effect of wire diameter compared to cable on the amount of traction produced. In respect to the latter the strength of the wire connection depends on the type of application (spring back or plastic deformation). The plastic deformation on application of the knurl has a strong effect on remaining that is active traction after application (Fig. 4).

The data on fatigue is crucial, here again the cable stands
out (Fig. 5). The effect cutting and bending down will be dealt with in “special aspects” (Figs 11–13).

The strength determines the maximal load that can be applied without breakage or irreversible deformation. Strength plays an important role in cerclage fixation. The strength of the wire loop is limited by the weaker element of wire breakage or unwinding of the knurled connection. The knurled connection of a wire loop may unwind under load either elastically when not properly tightened, or plastically under excessive load. The cables and their crimp connection are stronger.

The stiffness determines the amount of deformation under load. Stiffness depends upon material and especially structure.

The elongation of a solid steel wire under traction is small but unwinding of the knurl results in a loose-lock situation (see below). With its low bending stiffness the cable adapts better to the shape of the bone cross section and helps to keep fragment tips in place (Fig. 6). The elongation under load of a cable is somewhat larger than the one of a solid wire. This depends on its stranded structure and on the larger flexibility of the titanium when compared to solid wire made of steel.

The lever arm determines the momentum which a given force exerts. The larger the lever arm the stronger the effect of the loop. Therefore, cerclage loops need to be well spaced. This demand collides with the need to avoid the tip of a fragment end in order to prevent its breakage; a balanced compromise is therefore needed (see also Fig. 6).

Long spiral fractures provide large leverage while leverage of short oblique fractures is small. Therefore, the cerclage provides good strength in the former. A point to consider is that the leverage of fragmented bone is much smaller than in simple fractures. (Fig. 7)

The bone is an important partner when considering cerclage fixation. The function of the cerclage loop relies not only on the mechanical characteristics of the loop, but also on those of the bone. While cortical bone is strong and resists, the pressure exerted by a cerclage loop may cut into spongy bone.

The shape of bone fragments fixed by cerclage plays an important role. When considering the strength of a cerclage fixation the weaker element is often the bone due to its small cross section near the tip of a fragment end. Therefore, the cerclage loop should not be positioned in the region near the tip of a fragment end. A dis-
When considering the use of cerclage instead of lag screws we consider the fact that multiple fragments do not lend themselves to fixation by lag screws which are independent from plates, – either the application of lag screws will cause considerable tissue trauma, – or the presence of the stem of a prosthesis is blocking the medullary cavity.

The cerclage offers limited strength and is often applied in a way that results in unstable fixation from the outset. The result is further loosening due to bone surface resorption induced by micro-motion (3, 13).

We call “loose-lock stability” a third type of stability beside absolute stability, i.e. compressed fragment contact, and elastic stability, i.e. a (small) gap allowing reversible displacement under load. Loose-lock needs consideration especially in respect to cerclage fixation. In conditions where there is a loosely applied or loosened cerclage loop the fragment can displace under load with little resistance until the loop “engages” and rigidity limits further displacement. This type of fixation is also typical for locked nailing where the locking screw engages after a certain play within the transverse hole in the nail. A loose-lock stability also occurs when biological loosening at an interface between implant and bone allows some play at the interface. Loose-lock stability exerts an important effect on healing because the range of loose displacement may allow induction of bone repair while the locked range prevents too large a deformation (strain) of the repair tissue and thus prevents nonunion due to excessive strain.

CERCLAGE MECHANICS, SPECIAL ASPECTS

Some mechanical aspects of cerclage require special attention to gain full advantage when reducing and fixing fractures. The goal is to apply and maintain enough traction to keep the fracture fragments aligned and in a stable position in relation to each other (Fig. 8). Failures which were previously attributed to strangulation of blood supply can often be traced back to improper use and therefore insufficient mechanical performance of the cerclage.

When considering the use of cerclage instead of lag screws we consider the fact that multiple fragments do not lend themselves to fixation by lag screws which are independent from plates, – either the application of lag screws will cause considerable tissue trauma, – or the presence of the stem of a prosthesis is blocking the medullary cavity.

The cerclage offers limited strength and is often applied in a way that results in unstable fixation from the outset. The result is further loosening due to bone surface resorption induced by micro-motion (3, 13).

Fig. 8. Long spiral fracture reduced and fixed using a cerclage. The splinting plate provides protection from overload and allows early recovery of painless function (from ICUC® database).
The following elements need to be considered and appropriate action needs to cope with them:

– Cerclage loops which stabilize two fragments need to be spaced as much as possible to provide good leverage that reduces traction within the cerclage wire for a given load (Fig. 7).

– The limitation to such spacing stems from the danger to break peaked fragments when the cerclage is placed at the fine tip of the fragment.

– It goes without saying that the very small area of contact of the cerclage wire results in high stress in the contacted bone. But within the range of mechanically tolerated stress maintained pressure does not induce resorption (10).

– When tightening the cerclage wire producing a knurl the elastic wire presents a spring back action (Fig. 9).

The following elements need to be considered and appropriate action needs to cope with them:

– Cerclage loops which stabilize two fragments need to be spaced as much as possible to provide good leverage that reduces traction within the cerclage wire for a given load (Fig. 7).

– The limitation to such spacing stems from the danger to break peaked fragments when the cerclage is placed at the fine tip of the fragment.

– It goes without saying that the very small area of contact of the cerclage wire results in high stress in the contacted bone. But within the range of mechanically tolerated stress maintained pressure does not induce resorption (10).

– When tightening the cerclage wire producing a knurl the elastic wire presents a spring back action (Fig. 9).
CERCLAGE BIOLOGY

Problems and solutions, an overview

Preamble

Cerclage can offer substantial help in the reduction and fixation of fractures. It can fill certain gaps left by the existing instrument sets, particularly in the treatment of periprosthetic fractures. For decades the use of cerclage was condemned because it would “strangulate blood supply”. Is this fact or myth? The following addresses aspects of blood supply as well as of biological loosening of the cerclage.

Problem

Cerclage was a technique in frequent use in fracture management in the early years. It seemed obvious that a long spiral fracture, for example, would profit from simple transverse loops pushing the fragments together. Thus, not only reducing but permanently stabilizing with cerclage appeared to be a favorable solution. Still the results of internal fixation depending on cerclage alone were all too often unsatisfactory. Lack of mechanical strength and secondary instability due to biologically induced instability were the main shortcomings. The poor results were often attributed to strangulation of blood supply in spite of earlier observations (9, 15).

Solution

Recent observations question the all too easily voiced and accepted theory of vascular strangulation. Histology (Fig. 18) demonstrates that cerclage loops applied so as to avoid gross soft tissue stripping exert no relevant strangulation. The blood vessels might be squeezed by the cerclage loop at entry into the bone. Due to the radial tension the wire is tightened within the elastic range only the cerclage loop is loose at the start, which produces a loose-lock fixation.

– The procedure of application of the cerclage wire is critical in respect to the tension achieved (Figs 9–13).
– The observation of bone loss at the surface in contact with the cerclage is not a reaction to high pressure but to instability due to insufficient pretension allowing micro-motion-induced bone resorption.
– Tightening the knurl well into the range of plastic deformation (Fig. 9) results in tightly maintained traction in the wire which results in centripetal compression for reduction and maintained fixation.
– Similar considerations apply to the use of crimped cables. Crimping a well pre-tensioned cable using crimping technology that withstands pull out is the solution.
– The wire loops which are not applied perpendicular to the long axis of the bone will adjust their position under load and become loose, once again a loose-lock situation. This statement applies especially to cerclages including plates (low friction between steel components).
– The former use of plaster “protecting” cerclage fixation must be challenged because its protecting effect is minimal. It may even add to load due to inertia. The additional immobilization that arises from combining the disadvantages of conservative and surgical treatment is unfortunate.
– Using simple vs. double loops is demonstrated in Fig. 14 and its effect is shown in Fig. 15.

Conclusion

The cerclage technique offers substantial help for specific situations (like periprosthetic fractures) when applied to provide maintained stable fixation and to avoid surgical trauma (7).

Fig. 15. Pretension, load at onset of plastic deformation and load at total failure. Mean wire tension values for the different cerclage configurations and types are displayed in (N). Double-looped cables performed significantly better (p<0.05) in all tested modalities compared to single-looped cables Color coding according to Fig. 14 (8).

Fig. 16. Radial orientation of periosteal blood vessels approaching bone along the muscle fibers (2). The red semicircle indicates the position of the cerclage wire before tightening. The arrow indicates the expected displacement of the wire along the radially oriented blood vessels.
orientation of the blood vessels entering along muscle fibers (Fig. 16) this effect is small. Any implant to bone contact impedes the blood supply to the bone locally causing "contact damage" (4). For wires and cables the contact is less than a millimeter wide and its effect is superficial and mitigated by diffusion (Fig. 18).

The reason why the blood supply is not strangulated in spite of a closely fitting wire or cable is explained by the fact that the blood vessels are not oriented along the bone but radially (Fig. 16). Therefore, the cerclage loop has a minimal effect on periosteal blood supply.

When cerclage wires are tensioned and fixed with a knurl without special care there is often an elastic spring back producing a so-called "loose-lock stability". The resulting micro movements at the interface between the bone and the wire induce bone surface resorption (Fig. 17).

Conclusion

Disregarding the myth of vascular strangulation of blood supply, the cerclage offers help (7) in demanding situations like periprosthetic fractures. It is important to avoid spring back of the connecting knurl to prevent induction of biological loosening that will result in gross instability.

CERCLAGE APPLICATION

Problems and Solutions, an overview

Preamble

To benefit from the advantages offered by cerclages the technology of their application demands understanding, attention and skills. Understanding the rationale of different applications and their effect on fracture healing is a prerequisite for success.

(For more information [ctrl + double-click] the following links: Link for cerclage movie: https://www.dropbox.com/s/0jcsnbkfkhz7f/CERCLAGE150327.mov?dl=0)

Problem

Cerclages are best suited to long oblique and spiral fractures where they take advantage of a large lever arm. They are exceptionally effective when applied to spiral fractures with a butterfly fragment at a location where all three fragments can be included within the loop. Under ideal circumstances this allows perfect reduction and anatomic contact of the three fragments in one action (Figs 19 and 20). Under other circumstances cerclages...
The vantage of larger contact-damage to blood supply outweighs the improved strength.

- The large blood vessels especially at the distal femur or tibia may inadvertently be included within the loop and be strangulated with deleterious effect. Special care is required when applying cerclages to non-reduced fractures and to bone segments with close relations to blood vessels and/or nerves (“danger segments”), (1).

- To increase the strength solid wires of larger diameter may be used. The disadvantage of such a procedure is that when inadvertently bent at application the stiffer wire will not adapt well to the uneven surface of the bone and the result will be contact points with high local stress.

Cerclages may be used for reduction and may remain in place for fixation. Their contribution is restricted by limited strength either due to unwinding of the connecting knurl, or due to breakage of the wire. To gain the best advantage tensioning during application is important. Using cables (Fig. 22) instead of wires alleviates these disadvantages. The cable is stronger, more flexible and is able to reliably install and maintain tension. The limited strength of the cerclage loop does not allow its use as an exclusive (isolated) implant. In turn, when protected through additional load sharing splints such as the stem of a prosthesis, a plate or a nail, the cerclage offers valued help (6). It is important to realize that a plaster cast cannot protect a cerclage, because the plaster cast is only loosely coupled to bone. Such coupling allows a range of bending deformations. The wire breaks before the cast function engages and would protect. The additional plaster cast adds inertia and with it loading. Some possible problems deserve attention:

- To increase the strength of the cerclage, instead of wires and cables, straps or flat bands, made of metal or plastic (Fig. 23) were used early on. Their disad-
elastically spring back (Fig. 21). This results in loosening of the wire and in a “loose-lock” instability. Spring back may be avoided by twisting the knurl exceeding the elastic limit of the steel and plastically deforming the knurl. Cutting off and bending down the knurl to lay flat against the surface are the next steps that may diminish or eliminate the tension in the wire. Cutting is best done with a tightening movement. Bending down has a very different effect according to the direction of bending. The optimal direction of bending carries forward the twisting movement. Using crimped cables instead of twisted wires avoids the above-mentioned problems and are therefore an important advantage.

Conclusion
Cerclage may be used as a temporary reduction tool or as an efficient supplementary fixation. Safe use requires avoiding the pitfalls listed to take advantage of the possibilities offered.

References

Corresponding author:
Prof. Stephan M. Perren,
found member and scientific advisor
AO Foundation
Dischmastr. 22
CH-7260 Davos, Switzerland
E-mail: sperren@bluewin.ch